Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monitoring Link Faults in Nonlinear Diffusively-coupled Networks (1908.03588v2)

Published 9 Aug 2019 in eess.SY, cs.SY, and math.OC

Abstract: Fault detection and isolation is an area of engineering dealing with designing on-line protocols for systems that allow one to identify the existence of faults, pinpoint their exact location, and overcome them. We consider the case of multi-agent systems, where faults correspond to the disappearance of links in the underlying graph, simulating a communication failure between the corresponding agents. We study the case in which the agents and controllers are maximal equilibrium-independent passive (MEIP), and use the known connection between steady-states of these multi-agent systems and network optimization theory. We first study asymptotic methods of differentiating the faultless system from its faulty versions by studying their steady-state outputs. We explain how to apply the asymptotic differentiation to detect and isolate communication faults, with graph-theoretic guarantees on the number of faults that can be isolated, assuming the existence of a "convergence assertion protocol", a data-driven method of asserting that a multi-agent system converges to a conjectured limit. We then construct two data-driven model-based convergence assertion protocols. We demonstrate our results by a case study.

Citations (12)

Summary

We haven't generated a summary for this paper yet.