Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CRIC: A VQA Dataset for Compositional Reasoning on Vision and Commonsense (1908.02962v3)

Published 8 Aug 2019 in cs.CV and cs.AI

Abstract: Alternatively inferring on the visual facts and commonsense is fundamental for an advanced VQA system. This ability requires models to go beyond the literal understanding of commonsense. The system should not just treat objects as the entrance to query background knowledge, but fully ground commonsense to the visual world and imagine the possible relationships between objects, e.g., "fork, can lift, food". To comprehensively evaluate such abilities, we propose a VQA benchmark, CRIC, which introduces new types of questions about Compositional Reasoning on vIsion and Commonsense, and an evaluation metric integrating the correctness of answering and commonsense grounding. To collect such questions and rich additional annotations to support the metric, we also propose an automatic algorithm to generate question samples from the scene graph associated with the images and the relevant knowledge graph. We further analyze several representative types of VQA models on the CRIC dataset. Experimental results show that grounding the commonsense to the image region and joint reasoning on vision and commonsense are still challenging for current approaches. The dataset is available at https://cricvqa.github.io.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Difei Gao (32 papers)
  2. Ruiping Wang (32 papers)
  3. Shiguang Shan (136 papers)
  4. Xilin Chen (119 papers)
Citations (25)