Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of the Caccetta-Haggkvist conjecture for digraphs with small independence number (1908.02902v4)

Published 8 Aug 2019 in math.CO

Abstract: For a digraph $G$ and $v \in V(G)$, let $\delta+(v)$ be the number of out-neighbors of $v$ in $G$. The Caccetta-H\"{a}ggkvist conjecture states that for all $k \ge 1$, if $G$ is a digraph with $n = |V(G)|$ such that $\delta+(v) \ge n/k$ for all $v \in V(G)$, then G contains a directed cycle of length at most $k$. In [2], N. Lichiardopol proved that this conjecture is true for digraphs with independence number equal to two. In this paper, we generalize that result, proving that the conjecture is true for digraphs with independence number at most $(k+1)/2$.

Summary

We haven't generated a summary for this paper yet.