Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum likelihood convolutional beamformer for simultaneous denoising and dereverberation (1908.02710v1)

Published 6 Aug 2019 in eess.AS and cs.SD

Abstract: This article describes a probabilistic formulation of a Weighted Power minimization Distortionless response convolutional beamformer (WPD). The WPD unifies a weighted prediction error based dereverberation method (WPE) and a minimum power distortionless response beamformer (MPDR) into a single convolutional beamformer, and achieves simultaneous dereverberation and denoising in an optimal way. However, the optimization criterion is obtained simply by combining existing criteria without any clear theoretical justification. This article presents a generative model and a probabilistic formulation of a WPD, and derives an optimization algorithm based on a maximum likelihood estimation. We also describe a method for estimating the steering vector of the desired signal by utilizing WPE within the WPD framework to provide an effective and efficient beamformer for denoising and dereverberation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tomohiro Nakatani (50 papers)
  2. Keisuke Kinoshita (44 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.