Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant theory for coincidental complex reflection groups (1908.02663v2)

Published 7 Aug 2019 in math.CO and math.RT

Abstract: V.F. Molchanov considered the Hilbert series for the space of invariant skew-symmetric tensors and dual tensors with polynomial coefficients under the action of a real reflection group, and speculated that it had a certain product formula involving the exponents of the group. We show that Molchanov's speculation is false in general but holds for all coincidental complex reflection groups when appropriately modified using exponents and co-exponents. These are the irreducible well-generated (i.e., duality) reflection groups with exponents forming an arithmetic progression and include many real reflection groups and all non-real Shephard groups, e.g., the Shephard-Todd infinite family $G(d,1,n)$. We highlight consequences for the $q$-Narayana and $q$-Kirkman polynomials, giving simple product formulas for both, and give a $q$-analogue of the identity transforming the $h$-vector to the $f$-vector for the coincidental finite type cluster/Cambrian complexes of Fomin--Zelevinsky and Reading.

Summary

We haven't generated a summary for this paper yet.