The Normalized Matching Property in Random and Pseudorandom Bipartite Graphs (1908.02628v3)
Abstract: A simple generalization of the Hall's condition in bipartite graphs, the Normalized Matching Property (NMP) in a graph $G(X,Y,E)$ with vertex partition $(X,Y)$ states that for any subset $S\subseteq X$, we have $\frac{|N(S)|}{|Y|}\ge\frac{|S|}{|X|}$. In this paper, we show the following results about having the Normalized Matching Property in random and pseudorandom graphs. 1. We establish $p=\frac{\log n}{k}$ as a sharp threshold for having NMP in $\mathbb{G}(k,n,p)$, which is the graph with $|X|=k,|Y|=n$ (assuming $k\le n\leq \exp(o(k))$), and in which each pair $(x,y)\in X\times Y$ is an edge independently with probability $p$. This generalizes a classic result of Erd\H{o}s-R\'enyi on the $\frac{\log n}{n}$ threshold for having a perfect matching in $\mathbb{G}(n,n,p)$. 2. We also show that a pseudorandom bipartite graph - upon deletion of a vanishingly small fraction of vertices - admits NMP, provided it is not too sparse. More precisely, a bipartite graph $G(X,Y)$, with $k=|X|\le |Y|=n$, is said to be Thomason pseudorandom (following A. Thomason (Discrete Math., 1989)) with parameters $(p,\varepsilon)$ if each $x\in X$ has degree at least $pn$ and each pair of distinct $x, x'\in X$ has at most $(1+\varepsilon)p2n$ common neighbors. We show that for any large enough $(p,\varepsilon)$-Thomason pseudorandom graph $G(X,Y)$, there are "tiny" subsets $\mathrm{Del}_X\subset X, \ \mathrm{Del}_Y\subset Y$ such that the subgraph $G(X\setminus \mathrm{Del}_X,Y\setminus \mathrm{Del}_Y)$ has NMP, provided $p \gg\tfrac{1}{k}$. En route, we prove an "almost" vertex decomposition theorem: Every such Thomason pseudorandom graph admits - excluding a negligible portion of its vertex set - a partition of its vertex set into graphs that we call Euclidean trees. These are trees that have NMP, and which arise organically through the Euclidean GCD algorithm.