Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: Non-symmetric operators and Carleson measure estimates (1908.02268v1)

Published 6 Aug 2019 in math.CA and math.AP

Abstract: We generalize to the setting of 1-sided chord-arc domains, that is, to domains satisfying the interior Corkscrew and Harnack Chain conditions (these are respectively scale-invariant/quantitative versions of the openness and path-connectedness) and which have an Ahlfors regular boundary, a result of Kenig-Kirchheim-Pipher-Toro, in which Carleson measure estimates for bounded solutions of the equation $Lu=-{\rm div}(A\nabla u) = 0$ with $A$ being a real (not necessarily symmetric) uniformly elliptic matrix, imply that the corresponding elliptic measure belongs to the Muckenhoupt $A_\infty$ class with respect to surface measure on the boundary. We present two applications of this result. In the first one we extend a perturbation result recently proved by Cavero-Hofmann-Martell presenting a simpler proof and allowing non-symmetric coefficients. Second, we prove that if an operator $L$ as above has locally Lipschitz coefficients satisfying certain Carleson measure condition then $\omega_L\in A_\infty$ if and only if $\omega_{L\top}\in A_\infty$. As a consequence, we can remove one of the main assumptions in the non-symmetric case of a result of Hofmann-Martell-Toro and show that if the coefficients satisfy a slightly stronger Carleson measure condition the membership of the elliptic measure associated with $L$ to the class $A_\infty$ yields that the domain is indeed a chord-arc domain.

Summary

We haven't generated a summary for this paper yet.