Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the identification of source term in the heat equation from sparse data (1908.02015v1)

Published 6 Aug 2019 in math.AP, cs.NA, and math.NA

Abstract: We consider the recovery of a source term $f(x,t)=p(x)q(t)$ for the nonhomogeneous heat equation in $\Omega\times (0,\infty)$ where $\Omega$ is a bounded domain in $\mathbb{R}2$ with smooth boundary $\partial\Omega$ from overposed lateral data on a sparse subset of $\partial\Omega\times(0,\infty)$. Specifically, we shall require a small finite number $N$ of measurement points on $\partial\Omega$ and prove a uniqueness result; namely the recovery of the pair $(p,q)$ within a given class, by a judicious choice of $N=2$ points. Naturally, with this paucity of overposed data, the problem is severely ill-posed. Nevertheless we shall show that provided the data noise level is low, effective numerical reconstructions may be obtained.

Citations (9)

Summary

We haven't generated a summary for this paper yet.