Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Deep Subspace Clustering Networks (1908.01978v2)

Published 6 Aug 2019 in cs.CV and cs.LG

Abstract: Multi-view subspace clustering aims to discover the inherent structure of data by fusing multiple views of complementary information. Most existing methods first extract multiple types of handcrafted features and then learn a joint affinity matrix for clustering. The disadvantage of this approach lies in two aspects: 1) multi-view relations are not embedded into feature learning, and 2) the end-to-end learning manner of deep learning is not suitable for multi-view clustering. Even when deep features have been extracted, it is a nontrivial problem to choose a proper backbone for clustering on different datasets. To address these issues, we propose the Multi-view Deep Subspace Clustering Networks (MvDSCN), which learns a multi-view self-representation matrix in an end-to-end manner. The MvDSCN consists of two sub-networks, \ie, a diversity network (Dnet) and a universality network (Unet). A latent space is built using deep convolutional autoencoders, and a self-representation matrix is learned in the latent space using a fully connected layer. Dnet learns view-specific self-representation matrices, whereas Unet learns a common self-representation matrix for all views. To exploit the complementarity of multi-view representations, the Hilbert--Schmidt independence criterion (HSIC) is introduced as a diversity regularizer that captures the nonlinear, high-order inter-view relations. Because different views share the same label space, the self-representation matrices of each view are aligned to the common one by universality regularization. The MvDSCN also unifies multiple backbones to boost clustering performance and avoid the need for model selection. Experiments demonstrate the superiority of the MvDSCN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace structures by low-rank representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171–184, 2012.
  2. P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep subspace clustering networks,” NeurIPS, vol. 30, pp. 1–10, 2017.
  3. Y. Qin, G. Feng, Y. Ren, and X. Zhang, “Consistency-induced multiview subspace clustering,” IEEE Transactions on Cybernetics, vol. 53, no. 2, pp. 832–844, 2023.
  4. C. Lu, J. Feng, Z. Lin, T. Mei, and S. Yan, “Subspace clustering by block diagonal representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 2, pp. 487–501, 2018.
  5. Y. Wang, Z. Wang, Q. Hu, Y. Zhou, and H. Su, “Hierarchical semantic risk minimization for large-scale classification,” IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9546–9558, 2022.
  6. Y. Jiang, Z. Yang, Q. Xu, X. Cao, and Q. Huang, “When to learn what: Deep cognitive subspace clustering,” in ACM MM, 2018, pp. 718–726.
  7. M. Luo, X. Chang, Z. Li, L. Nie, A. G. Hauptmann, and Q. Zheng, “Simple to complex cross-modal learning to rank,” Computer Vision and Image Understanding, vol. 163, pp. 67–77, 2017.
  8. S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in CVPR, 2015, pp. 2103–2112.
  9. X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in CVPR, 2017, pp. 1907–1915.
  10. H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep matrix factorization,” in AAAI, 2017, pp. 2921––2927.
  11. K. Li, H. Liu, Y. Zhang, K. Li, and Y. Fu, “Self-guided deep multiview subspace clustering via consensus affinity regularization,” IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 12 734–12 744, 2022.
  12. T. Zhou, C. Zhang, X. Peng, H. Bhaskar, and J. Yang, “Dual shared-specific multiview subspace clustering,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3517–3530, 2020.
  13. Y. Tang, Y. Xie, C. Zhang, Z. Zhang, and W. Zhang, “One-step multiview subspace segmentation via joint skinny tensor learning and latent clustering,” IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9179–9193, 2022.
  14. L. Xing, B. Chen, S. Du, Y. Gu, and N. Zheng, “Correntropy-based multiview subspace clustering,” IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3298–3311, 2021.
  15. M.-S. Chen, L. Huang, C.-D. Wang, D. Huang, and S. Y. Philip, “Multiview subspace clustering with grouping effect,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 7655–7668, 2022.
  16. C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent multi-view subspace clustering,” in CVPR, 2017, pp. 4279–4287.
  17. Z. Yu, G. Zhang, J. Chen, H. Chen, D. Zhang, Q. Yang, and J. Shao, “Toward noise-resistant graph embedding with subspace clustering information,” IEEE Transactions on Cybernetics, vol. 53, no. 5, pp. 2980–2992, 2023.
  18. Z. Fu, Y. Zhao, D. Chang, Y. Wang, and J. Wen, “Latent low-rank representation with weighted distance penalty for clustering,” IEEE Transactions on Cybernetics, vol. 53, no. 11, pp. 6870–6882, 2023.
  19. C. Zhang, H. Li, W. Lv, Z. Huang, Y. Gao, and C. Chen, “Enhanced tensor low-rank and sparse representation recovery for incomplete multi-view clustering,” in AAAI, vol. 37, no. 9, 2023, pp. 11 174–11 182.
  20. Z. Yu, D. Wang, X.-B. Meng, and C. P. Chen, “Clustering ensemble based on hybrid multiview clustering,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6518–6530, 2022.
  21. U. Fang, M. Li, J. Li, L. Gao, T. Jia, and Y. Zhang, “A comprehensive survey on multi-view clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12 350–12 368, 2023.
  22. S. Li, H. Liu, Z. Tao, and Y. Fu, “Multi-view graph learning with adaptive label propagation,” in IEEE BigData, 2017, pp. 110–115.
  23. J. Chen, S. Yang, H. Mao, and C. Fahy, “Multiview subspace clustering using low-rank representation,” IEEE Transactions on Cybernetics, vol. 52, no. 11, pp. 12 364–12 378, 2022.
  24. D. Shi, L. Zhu, J. Li, Z. Cheng, and Z. Zhang, “Flexible multiview spectral clustering with self-adaptation,” IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2586–2599, 2023.
  25. Z. Kang, Z. Lin, X. Zhu, and W. Xu, “Structured graph learning for scalable subspace clustering: From single view to multiview,” IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 8976–8986, 2022.
  26. Z. Tao, H. Liu, S. Li, Z. Ding, and Y. Fu, “From ensemble clustering to multi-view clustering,” in IJCAI, 2017, pp. 2843–2849.
  27. Tao, Zhiqiang and Liu, Hongfu and Li, Sheng and Ding, Zhengming and Fu, Yun, “Marginalized multiview ensemble clustering,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 2, pp. 600–611, 2019.
  28. Y. Lin, Y. Gou, X. Liu, J. Bai, J. Lv, and X. Peng, “Dual contrastive prediction for incomplete multi-view representation learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4447–4461, 2023.
  29. M. Yang, Y. Li, P. Hu, J. Bai, J. Lv, and X. Peng, “Robust multi-view clustering with incomplete information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 1055–1069, 2023.
  30. J.-Q. Lin, M.-S. Chen, C.-D. Wang, and H. Zhang, “A tensor approach for uncoupled multiview clustering,” IEEE Transactions on Cybernetics, vol. 54, no. 2, pp. 1236–1249, 2024.
  31. W. Yan, Y. Zhang, C. Lv, C. Tang, G. Yue, L. Liao, and W. Lin, “Gcfagg: Global and cross-view feature aggregation for multi-view clustering,” in CVPR, 2023, pp. 19 863–19 872.
  32. C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized latent multi-view subspace clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 1, pp. 86–99, 2018.
  33. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in CVPR, vol. 2, 2005, pp. 60–65.
  34. P. Zhu, W. Zhu, Q. Hu, C. Zhang, and W. Zuo, “Subspace clustering guided unsupervised feature selection,” Pattern Recognition, vol. 66, pp. 364–374, 2017.
  35. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in CVPR, 2018, pp. 7794–7803.
  36. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
  37. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.” Journal of Machine Learning Research, vol. 11, no. 12, pp. 3371–3408, 2010.
  38. J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,” in ICML, 2016, pp. 478–487.
  39. X. Peng, S. Xiao, J. Feng, W.-Y. Yau, and Z. Yi, “Deep subspace clustering with sparsity prior.” in IJCAI, 2016, pp. 1925–1931.
  40. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in ICANN, 2011, pp. 52–59.
  41. A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play generative networks: Conditional iterative generation of images in latent space,” in CVPR, 2017, pp. 4467–4477.
  42. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in ICML, 2010, pp. 807–817.
  43. A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring statistical dependence with hilbert-schmidt norms,” in ALT, 2005, pp. 63–77.
  44. L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv preprint arXiv:1508.06576, 2015.
  45. X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, “Diversity-induced multi-view subspace clustering,” in CVPR, 2015, pp. 586–594.
  46. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  47. A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” R News, vol. 2, no. 3, pp. 18–22, 2002.
  48. J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new classifier ensemble method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1619–1630, 2006.
  49. X. Peng, L. Zhang, and Z. Yi, “Scalable sparse subspace clustering,” in CVPR, 2013, pp. 430–437.
  50. N. Ikizler, R. G. Cinbis, S. Pehlivan, and P. Duygulu, “Recognizing actions from still images,” in ICPR, 2008, pp. 1–4.
  51. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in CVPR, 2009, pp. 248–255.
  52. K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d object dataset,” in ICRA, 2011, pp. 1817–1824.
  53. C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-2011 dataset,” pp. 1–8, 2011.
  54. A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” NeurIPS, vol. 14, pp. 1–8, 2001.
  55. R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clustering via low-rank and sparse decomposition,” in AAAI, vol. 28, no. 1, 2014, pp. 1–7.
  56. M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual features,” in ECCV, 2018, pp. 132–149.
  57. V. R. De Sa, “Spectral clustering with two views,” in ICML workshop on Learning with Multiple Views, 2005, pp. 20–27.
  58. A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral clustering,” NeurIPS, vol. 24, pp. 1–9, 2011.
  59. R. Li, C. Zhang, Q. Hu, P. Zhu, and Z. Wang, “Flexible multi-view representation learning for subspace clustering.” in IJCAI, 2019, pp. 2916–2922.
  60. M. Abavisani and V. M. Patel, “Deep multimodal subspace clustering networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 6, pp. 1601–1614, 2018.
  61. Q. Wang, J. Cheng, Q. Gao, G. Zhao, and L. Jiao, “Deep multi-view subspace clustering with unified and discriminative learning,” IEEE Transactions on Multimedia, vol. 23, pp. 3483–3493, 2020.
  62. C. Zhang, Y. Cui, Z. Han, J. T. Zhou, H. Fu, and Q. Hu, “Deep partial multi-view learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 2402–2415, 2022.
  63. J. Wen, Z. Zhang, Z. Zhang, L. Zhu, L. Fei, B. Zhang, and Y. Xu, “Unified tensor framework for incomplete multi-view clustering and missing-view inferring,” in AAAI, vol. 35, no. 11, 2021, pp. 10 273–10 281.
Citations (70)

Summary

We haven't generated a summary for this paper yet.