Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive Generalized Graph Fourier Transform for Attribute Compression of Dynamic Point Clouds (1908.01970v4)

Published 6 Aug 2019 in cs.MM and cs.GR

Abstract: As 3D scanning devices and depth sensors advance, dynamic point clouds have attracted increasing attention as a format for 3D objects in motion, with applications in various fields such as immersive telepresence, navigation for autonomous driving and gaming. Nevertheless, the tremendous amount of data in dynamic point clouds significantly burden transmission and storage. To this end, we propose a complete compression framework for attributes of 3D dynamic point clouds, focusing on optimal inter-coding. Firstly, we derive the optimal inter-prediction and predictive transform coding assuming the Gaussian Markov Random Field model with respect to a spatio-temporal graph underlying the attributes of dynamic point clouds. The optimal predictive transform proves to be the Generalized Graph Fourier Transform in terms of spatio-temporal decorrelation. Secondly, we propose refined motion estimation via efficient registration prior to inter-prediction, which searches the temporal correspondence between adjacent frames of irregular point clouds. Finally, we present a complete framework based on the optimal inter-coding and our previously proposed intra-coding, where we determine the optimal coding mode from rate-distortion optimization with the proposed offline-trained $\lambda$-Q model. Experimental results show that we achieve around 17% bit rate reduction on average over competitive dynamic point cloud compression methods.

Citations (48)

Summary

We haven't generated a summary for this paper yet.