Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind SAR Image Despeckling Using Self-Supervised Dense Dilated Convolutional Neural Network (1908.01608v2)

Published 5 Aug 2019 in eess.IV, cs.GR, and eess.SP

Abstract: Despeckling is a key and indispensable step in SAR image preprocessing, existing deep learning-based methods achieve SAR despeckling by learning some mappings between speckled (different looks) and clean images. However, there exist no clean SAR image in the real world. To this end, in this paper, we propose a self-supervised dense dilated convolutional neural network (BDSS) for blind SAR image despeckling. Proposed BDSS can still learn to suppress speckle noise without clean ground truth by optimized for L2 loss. Besides, three enhanced dense blocks with dilated convolution are employed to improve network performance. The synthetic and real-data experiments demonstrate that proposed BDSS can achieve despeckling effectively while maintaining well features such as edges, point targets, and radiometric. At last, we demonstrate that our proposed BDSS can achieve blind despeckling excellently, i.e., do not need to care about the number of looks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.