Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization (1908.01402v2)

Published 4 Aug 2019 in math.OC, cs.NA, and math.NA

Abstract: We introduce and analyze BPALM and A-BPALM, two multi-block proximal alternating linearized minimization algorithms using Bregman distances for solving structured nonconvex problems. The objective function is the sum of a multi-block relatively smooth function (i.e., relatively smooth by fixing all the blocks except one) and block separable (nonsmooth) nonconvex functions. It turns out that the sequences generated by our algorithms are subsequentially convergent to critical points of the objective function, while they are globally convergent under KL inequality assumption. Further, the rate of convergence is further analyzed for functions satisfying the {\L}ojasiewicz's gradient inequality. We apply this framework to orthogonal nonnegative matrix factorization (ONMF) that satisfies all of our assumptions and the related subproblems are solved in closed forms, where some preliminary numerical results is reported.

Citations (30)

Summary

We haven't generated a summary for this paper yet.