Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximation of the Schrödinger equation with concentrated potential (1908.01292v2)

Published 4 Aug 2019 in math.NA and cs.NA

Abstract: We present a family of algorithms for the numerical approximation of the Schr\"odinger equation with potential concentrated at a finite set of points. Our methods belong to the so-called fast and oblivious convolution quadrature algorithms. These algorithms are special implementations of Lubich's Convolution Quadrature which allow, for certain applications in particular parabolic problems, to significantly reduce the computational cost and memory requirements. Recently it has been noticed that their use can be extended to some hyperbolic problems. Here we propose a new family of such efficient algorithms tailored to the features of the Green's function for Schr\"odinger equations. In this way, we are able to keep the computational cost and the storage requirements significantly below existing approaches. These features allow us to perform reliable numerical simulations for longer times even in cases where the solution becomes highly oscillatory or seems to develop finite time blow-up. We illustrate our new algorithm with several numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.