Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relative Spectral Invariants of Elliptic Operators on Manifolds (1908.01265v2)

Published 4 Aug 2019 in math-ph, math.DG, math.MP, and math.SP

Abstract: We introduce and study {\it new} relative spectral invariants of {\it two} elliptic partial differential operators of Laplace and Dirac type on compact smooth manifolds without boundary that depend on both the eigenvalues and the eigensections of these operators and contain much more information about geometry. We prove the existence of the homogeneous short time asymptotics of the new invariants with the coefficients of the asymptotic expansion being integrals of some invariants that depend on the symbols of both operators. The first two coefficients of the asymptotic expansion are computed explicitly.

Summary

We haven't generated a summary for this paper yet.