Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Guarantees of Evolutionary Algorithms for Maximization of Monotone Submodular Functions (1908.01230v5)

Published 3 Aug 2019 in cs.DS

Abstract: In this paper, the monotone submodular maximization problem (SM) is studied. SM is to find a subset of size $\kappa$ from a universe of size $n$ that maximizes a monotone submodular objective function $f$. We show using a novel analysis that the Pareto optimization algorithm achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$, where $P\leq n+1$ is an input, in $O(nP\ln(1/\epsilon))$ queries of $f$. In addition, a novel evolutionary algorithm called the biased Pareto optimization algorithm, is proposed that achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$ in $O(n\ln(P)\ln(1/\epsilon))$ queries of $f$. Further, the biased Pareto optimization algorithm can be modified in order to achieve a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for cardinality constraint $\kappa$ in $O(n\ln(1/\epsilon))$ queries of $f$. An empirical evaluation corroborates our theoretical analysis of the algorithms, as the algorithms exceed the stochastic greedy solution value at roughly when one would expect based upon our analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Victoria G. Crawford (10 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.