Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weight Friction: A Simple Method to Overcome Catastrophic Forgetting and Enable Continual Learning (1908.01052v2)

Published 2 Aug 2019 in cs.LG, cs.NE, and stat.ML

Abstract: In recent years, deep neural networks have found success in replicating human-level cognitive skills, yet they suffer from several major obstacles. One significant limitation is the inability to learn new tasks without forgetting previously learned tasks, a shortcoming known as catastrophic forgetting. In this research, we propose a simple method to overcome catastrophic forgetting and enable continual learning in neural networks. We draw inspiration from principles in neurology and physics to develop the concept of weight friction. Weight friction operates by a modification to the update rule in the gradient descent optimization method. It converges at a rate comparable to that of the stochastic gradient descent algorithm and can operate over multiple task domains. It performs comparably to current methods while offering improvements in computation and memory efficiency.

Summary

We haven't generated a summary for this paper yet.