Papers
Topics
Authors
Recent
2000 character limit reached

Deep ReLU network approximation of functions on a manifold

Published 2 Aug 2019 in stat.ML and cs.LG | (1908.00695v1)

Abstract: Whereas recovery of the manifold from data is a well-studied topic, approximation rates for functions defined on manifolds are less known. In this work, we study a regression problem with inputs on a $d*$-dimensional manifold that is embedded into a space with potentially much larger ambient dimension. It is shown that sparsely connected deep ReLU networks can approximate a H\"older function with smoothness index $\beta$ up to error $\epsilon$ using of the order of $\epsilon{-d*/\beta}\log(1/\epsilon)$ many non-zero network parameters. As an application, we derive statistical convergence rates for the estimator minimizing the empirical risk over all possible choices of bounded network parameters.

Citations (89)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.