Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Black-box Adversarial ML Attack on Modulation Classification (1908.00635v1)

Published 1 Aug 2019 in cs.NI, cs.CR, and cs.LG

Abstract: Recently, many deep neural networks (DNN) based modulation classification schemes have been proposed in the literature. We have evaluated the robustness of two famous such modulation classifiers (based on the techniques of convolutional neural networks and long short term memory) against adversarial machine learning attacks in black-box settings. We have used Carlini & Wagner (C-W) attack for performing the adversarial attack. To the best of our knowledge, the robustness of these modulation classifiers has not been evaluated through C-W attack before. Our results clearly indicate that state-of-art deep machine learning-based modulation classifiers are not robust against adversarial attacks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.