Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Primal-Dual Mirror Descent under Stochastic Constraints (1908.00305v1)

Published 1 Aug 2019 in math.OC

Abstract: We consider online convex optimization with stochastic constraints where the objective functions are arbitrarily time-varying and the constraint functions are independent and identically distributed (i.i.d.) over time. Both the objective and constraint functions are revealed after the decision is made at each time slot. The best known expected regret for solving such a problem is $\mathcal{O}(\sqrt{T})$, with a coefficient that is polynomial in the dimension of the decision variable and relies on the Slater condition (i.e. the existence of interior point assumption), which is restrictive and in particular precludes treating equality constraints. In this paper, we show that such Slater condition is in fact not needed. We propose a new primal-dual mirror descent algorithm and show that one can attain $\mathcal{O}(\sqrt{T})$ regret and constraint violation under a much weaker Lagrange multiplier assumption, allowing general equality constraints and significantly relaxing the previous Slater conditions. Along the way, for the case where decisions are contained in a probability simplex, we reduce the coefficient to have only a logarithmic dependence on the decision variable dimension. Such a dependence has long been known in the literature on mirror descent but seems new in this new constrained online learning scenario.

Summary

We haven't generated a summary for this paper yet.