Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Color-Concept Associations from Image Statistics (1908.00220v2)

Published 1 Aug 2019 in cs.HC

Abstract: To interpret the meanings of colors in visualizations of categorical information, people must determine how distinct colors correspond to different concepts. This process is easier when assignments between colors and concepts in visualizations match people's expectations, making color palettes semantically interpretable. Efforts have been underway to optimize color palette design for semantic interpretablity, but this requires having good estimates of human color-concept associations. Obtaining these data from humans is costly, which motivates the need for automated methods. We developed and evaluated a new method for automatically estimating color-concept associations in a way that strongly correlates with human ratings. Building on prior studies using Google Images, our approach operates directly on Google Image search results without the need for humans in the loop. Specifically, we evaluated several methods for extracting raw pixel content of the images in order to best estimate color-concept associations obtained from human ratings. The most effective method extracted colors using a combination of cylindrical sectors and color categories in color space. We demonstrate that our approach can accurately estimate average human color-concept associations for different fruits using only a small set of images. The approach also generalizes moderately well to more complicated recycling-related concepts of objects that can appear in any color.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ragini Rathore (1 paper)
  2. Zachary Leggon (2 papers)
  3. Laurent Lessard (59 papers)
  4. Karen B. Schloss (7 papers)
Citations (17)