Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Kinematic Models for Kinematically Feasible Vehicle Trajectory Predictions (1908.00219v3)

Published 1 Aug 2019 in cs.RO, cs.CV, cs.LG, and stat.ML

Abstract: Self-driving vehicles (SDVs) hold great potential for improving traffic safety and are poised to positively affect the quality of life of millions of people. To unlock this potential one of the critical aspects of the autonomous technology is understanding and predicting future movement of vehicles surrounding the SDV. This work presents a deep-learning-based method for kinematically feasible motion prediction of such traffic actors. Previous work did not explicitly encode vehicle kinematics and instead relied on the models to learn the constraints directly from the data, potentially resulting in kinematically infeasible, suboptimal trajectory predictions. To address this issue we propose a method that seamlessly combines ideas from the AI with physically grounded vehicle motion models. In this way we employ best of the both worlds, coupling powerful learning models with strong feasibility guarantees for their outputs. The proposed approach is general, being applicable to any type of learning method. Extensive experiments using deep convnets on real-world data strongly indicate its benefits, outperforming the existing state-of-the-art.

Citations (25)

Summary

We haven't generated a summary for this paper yet.