Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FaVeST: Fast Vector Spherical Harmonic Transforms (1908.00041v3)

Published 31 Jul 2019 in math.NA, cs.CC, and cs.NA

Abstract: Vector spherical harmonics on the unit sphere of $\mathbb{R}3$ have broad applications in geophysics, quantum mechanics and astrophysics. In the representation of a tangent vector field, one needs to evaluate the expansion and the Fourier coefficients of vector spherical harmonics. In this paper, we develop fast algorithms (FaVeST) for vector spherical harmonic transforms on these evaluations. The forward FaVeST evaluates the Fourier coefficients and has a computational cost proportional to $N\log \sqrt{N}$ for $N$ number of evaluation points. The adjoint FaVeST which evaluates a linear combination of vector spherical harmonics with a degree up to $\sqrt{M}$ for $M$ evaluation points has cost proportional to $M\log\sqrt{M}$. Numerical examples of simulated tangent fields illustrate the accuracy, efficiency and stability of FaVeST.

Citations (7)

Summary

We haven't generated a summary for this paper yet.