Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Point Bandit Algorithms for Nonstationary Online Nonconvex Optimization (1907.13616v2)

Published 31 Jul 2019 in stat.ML, cs.DS, cs.LG, math.OC, math.ST, and stat.TH

Abstract: Bandit algorithms have been predominantly analyzed in the convex setting with function-value based stationary regret as the performance measure. In this paper, motivated by online reinforcement learning problems, we propose and analyze bandit algorithms for both general and structured nonconvex problems with nonstationary (or dynamic) regret as the performance measure, in both stochastic and non-stochastic settings. First, for general nonconvex functions, we consider nonstationary versions of first-order and second-order stationary solutions as a regret measure, motivated by similar performance measures for offline nonconvex optimization. In the case of second-order stationary solution based regret, we propose and analyze online and bandit versions of the cubic regularized Newton's method. The bandit version is based on estimating the Hessian matrices in the bandit setting, based on second-order Gaussian Stein's identity. Our nonstationary regret bounds in terms of second-order stationary solutions have interesting consequences for avoiding saddle points in the bandit setting. Next, for weakly quasi convex functions and monotone weakly submodular functions we consider nonstationary regret measures in terms of function-values; such structured classes of nonconvex functions enable one to consider regret measure defined in terms of function values, similar to convex functions. For this case of function-value, and first-order stationary solution based regret measures, we provide regret bounds in both the low- and high-dimensional settings, for some scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Abhishek Roy (48 papers)
  2. Krishnakumar Balasubramanian (64 papers)
  3. Saeed Ghadimi (25 papers)
  4. Prasant Mohapatra (44 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.