Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privately Answering Classification Queries in the Agnostic PAC Model (1907.13553v3)

Published 31 Jul 2019 in cs.LG, cs.CR, and stat.ML

Abstract: We revisit the problem of differentially private release of classification queries. In this problem, the goal is to design an algorithm that can accurately answer a sequence of classification queries based on a private training set while ensuring differential privacy. We formally study this problem in the agnostic PAC model and derive a new upper bound on the private sample complexity. Our results improve over those obtained in a recent work [BTT18] for the agnostic PAC setting. In particular, we give an improved construction that yields a tighter upper bound on the sample complexity. Moreover, unlike [BTT18], our accuracy guarantee does not involve any blow-up in the approximation error associated with the given hypothesis class. Given any hypothesis class with VC-dimension $d$, we show that our construction can privately answer up to $m$ classification queries with average excess error $\alpha$ using a private sample of size $\approx \frac{d}{\alpha2}\,\max\left(1, \sqrt{m}\,\alpha{3/2}\right)$. Using recent results on private learning with auxiliary public data, we extend our construction to show that one can privately answer any number of classification queries with average excess error $\alpha$ using a private sample of size $\approx \frac{d}{\alpha2}\,\max\left(1, \sqrt{d}\,\alpha\right)$. When $\alpha=O\left(\frac{1}{\sqrt{d}}\right)$, our private sample complexity bound is essentially optimal.

Citations (26)

Summary

We haven't generated a summary for this paper yet.