Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramanujan type of congruences modulo m for (l, m)-regular bipartitions (1907.13450v2)

Published 31 Jul 2019 in math.NT

Abstract: Let $B_{l,m}(n)$ denote the number of $(l,m)$-regular bipartitions of $n$. Recently, many authors proved several infinite families of congruences modulo $3$, $5$ and $11$ for $B_{l,m}(n)$. In this paper, using theta function identities to prove infinite families of congruences modulo $m$ for $(l,m)$-regular bipartitions, where $m\in{7,3,11,13,17}$.

Summary

We haven't generated a summary for this paper yet.