Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Capabilities of Neural ODEs and Invertible Residual Networks (1907.12998v2)

Published 30 Jul 2019 in cs.LG and stat.ML

Abstract: Neural ODEs and i-ResNet are recently proposed methods for enforcing invertibility of residual neural models. Having a generic technique for constructing invertible models can open new avenues for advances in learning systems, but so far the question of whether Neural ODEs and i-ResNets can model any continuous invertible function remained unresolved. Here, we show that both of these models are limited in their approximation capabilities. We then prove that any homeomorphism on a $p$-dimensional Euclidean space can be approximated by a Neural ODE operating on a $2p$-dimensional Euclidean space, and a similar result for i-ResNets. We conclude by showing that capping a Neural ODE or an i-ResNet with a single linear layer is sufficient to turn the model into a universal approximator for non-invertible continuous functions.

Citations (94)

Summary

We haven't generated a summary for this paper yet.