Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confirmatory Aspect-based Opinion Mining Processes (1907.12850v1)

Published 30 Jul 2019 in cs.CL

Abstract: A new opinion extraction method is proposed to summarize unstructured, user-generated content (i.e., online customer reviews) in the fixed topic domains. To differentiate the current approach from other opinion extraction approaches, which are often exposed to a sparsity problem and lack of sentiment scores, a confirmatory aspect-based opinion mining framework is introduced along with its practical algorithm called DiSSBUS. In this procedure, 1) each customer review is disintegrated into a set of clauses; 2) each clause is summarized to bi-terms-a topic word and an evaluation word-using a part-of-speech (POS) tagger; and 3) each bi-term is matched to a pre-specified topic relevant to a specific domain. The proposed processes have two primary advantages over existing methods: 1) they can decompose a single review into a set of bi-terms related to pre-specified topics in the domain of interest and, therefore, 2) allow identification of the reviewer's opinions on the topics via evaluation words within the set of bi-terms. The proposed aspect-based opinion mining is applied to customer reviews of restaurants in Hawaii obtained from TripAdvisor, and the empirical findings validate the effectiveness of the method. Keywords: Clause-based sentiment analysis, Customer review, Opinion mining, Topic modeling, User-generate-contents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jongho Im (5 papers)
  2. Taikgun Song (1 paper)
  3. Youngsu Lee (1 paper)
  4. Jewoo Kim (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.