Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Let's Make It Personal, A Challenge in Personalizing Medical Inter-Human Communication (1907.12687v1)

Published 29 Jul 2019 in cs.AI and cs.HC

Abstract: Current AI approaches have frequently been used to help personalize many aspects of medical experiences and tailor them to a specific individuals' needs. However, while such systems consider medically-relevant information, they ignore socially-relevant information about how this diagnosis should be communicated and discussed with the patient. The lack of this capability may lead to mis-communication, resulting in serious implications, such as patients opting out of the best treatment. Consider a case in which the same treatment is proposed to two different individuals. The manner in which this treatment is mediated to each should be different, depending on the individual patient's history, knowledge, and mental state. While it is clear that this communication should be conveyed via a human medical expert and not a software-based system, humans are not always capable of considering all of the relevant aspects and traversing all available information. We pose the challenge of creating Intelligent Agents (IAs) to assist medical service providers (MSPs) and consumers in establishing a more personalized human-to-human dialogue. Personalizing conversations will enable patients and MSPs to reach a solution that is best for their particular situation, such that a relation of trust can be built and commitment to the outcome of the interaction is assured. We propose a four-part conceptual framework for personalized social interactions, expand on which techniques are available within current AI research and discuss what has yet to be achieved.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mor Vered (7 papers)
  2. Frank Dignum (18 papers)
  3. Tim Miller (53 papers)