Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Gradient Boosting -- Layer-wise Input Normalization of Neural Networks (1907.12608v3)

Published 29 Jul 2019 in cs.LG and stat.ML

Abstract: Stochastic gradient descent (SGD) has been the dominant optimization method for training deep neural networks due to its many desirable properties. One of the more remarkable and least understood quality of SGD is that it generalizes relatively well on unseen data even when the neural network has millions of parameters. We hypothesize that in certain cases it is desirable to relax its intrinsic generalization properties and introduce an extension of SGD called deep gradient boosting (DGB). The key idea of DGB is that back-propagated gradients inferred using the chain rule can be viewed as pseudo-residual targets of a gradient boosting problem. Thus at each layer of a neural network the weight update is calculated by solving the corresponding boosting problem using a linear base learner. The resulting weight update formula can also be viewed as a normalization procedure of the data that arrives at each layer during the forward pass. When implemented as a separate input normalization layer (INN) the new architecture shows improved performance on image recognition tasks when compared to the same architecture without normalization layers. As opposed to batch normalization (BN), INN has no learnable parameters however it matches its performance on CIFAR10 and ImageNet classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Erhan Bilal (4 papers)

Summary

We haven't generated a summary for this paper yet.