Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems (1907.12468v3)

Published 29 Jul 2019 in math.OC and cs.DS

Abstract: Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in K-dimensional space such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called discretization assumptions reduce the search space of the realization to a finite discrete one which can be explored via the branch-and-prune (BP) algorithm. Given a discretization vertex order in G, the BP algorithm constructs a binary tree where the nodes at a layer provide all possible coordinates of the vertex corresponding to that layer. The focus of this paper is finding optimal BP trees for a class of Discretizable DGPs. More specifically, we aim to find a discretization vertex order in G that yields a BP tree with the least number of branches. We propose an integer programming formulation and three constraint programming formulations that all significantly outperform the state-of-the-art cutting plane algorithm for this problem. Moreover, motivated by the difficulty in solving instances with a large and low density input graph, we develop two hybrid decomposition algorithms, strengthened by a set of valid inequalities, which further improve the solvability of the problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.