Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieving Similar Trajectories from Cellular Data at City Scale (1907.12371v2)

Published 20 Jul 2019 in eess.SP and cs.IR

Abstract: Retrieving similar trajectories from a large trajectory dataset is important for a variety of applications, like transportation planning and mobility analysis. Unlike previous works based on fine-grained GPS trajectories, this paper investigates the feasibility of identifying similar trajectories from cellular data observed by mobile infrastructure, which provide more comprehensive coverage. To handle the large localization errors and low sample rates of cellular data, we develop a holistic system, cellSim, which seamlessly integrates map matching and similar trajectory search. A set of map matching techniques are proposed to transform cell tower sequences into moving trajectories on a road map by considering the unique features of cellular data, like the dynamic density of cell towers and bidirectional roads. To further improve the accuracy of similarity search, map matching outputs M trajectory candidates of different confidence, and a new similarity measure scheme is developed to process the map matching results. Meanwhile, M is dynamically adapted to maintain a low false positive rate of the similarity search, and two pruning schemes are proposed to minimize the computation overhead. Extensive experiments on a large-scale dataset and real-world trajectories of 1701 km reveal that cellSim provides high accuracy (precision 62.4% and recall of 89.8%).

Citations (7)

Summary

We haven't generated a summary for this paper yet.