Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Henry Helson meets other big shots -- A brief survey (1907.12323v1)

Published 29 Jul 2019 in math.FA

Abstract: A theorem of Henry Helson shows that for every ordinary Dirichlet series $\sum a_n n{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\sum a_n \chi(n) n{-s}$, where $\chi: \mathbb{N} \to \mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Ces`{a}ro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.

Summary

We haven't generated a summary for this paper yet.