Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Endomorphism rings of supersingular elliptic curves over $\mathbb{F}_p$ (1907.12185v1)

Published 29 Jul 2019 in math.NT

Abstract: Let $p>3$ be a fixed prime. For a supersingular elliptic curve $E$ over $\mathbb{F}_p$ with $j$-invariant $j(E)\in \mathbb{F}_p\backslash{0, 1728}$, it is well known that the Frobenius map $\pi=((x,y)\mapsto (xp, yp))\in \mathrm{End}(E)$ satisfies ${\pi}2=-p$. A result of Ibukiyama tells us that $\mathrm{End}(E)$ is a maximal order in $\mathrm{End}(E)\otimes \mathbb{Q}$ associated to a (minimal) prime $q$ satisfying $q\equiv 3 \bmod 8$ and the quadratic residue $\bigl(\frac{p}{q}\bigr)=-1$ according to $\frac{1+\pi}{2}\notin \mathrm{End}(E)$ or $\frac{1+\pi}{2}\in \mathrm{End}(E)$. Let $q_j$ denote the minimal $q$ for $E$ with $j=j(E)$. Firstly, we determine the neighborhood of the vertex $[E]$ in the supersingular $\ell$-isogeny graph if $\frac{1+\pi}{2}\notin \mathrm{End}(E)$ and $p>q\ell2$ or $\frac{1+\pi}{2}\in \mathrm{End}(E)$ and $p>4q\ell2$. In particular, under our assumption, we show that there are at most two vertices defined over $\mathbb{F}_p$ adjacent to $[E]$. Next, under GRH, we obtain the bound $M(p)$ of $q_j$ for all $j$ and estimate the number of supersingular elliptic curves with $q_j<c\sqrt{p}$. We also computer the upper bound $M(p)$ for all $p\<2000$ numerically and show that $M(p)>\sqrt{p}$ except $p=11,23$ and $M(p)<p\log2 p$ for all $p$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.