Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Dilated FCN: Listening Longer to Hear Better (1907.11956v1)

Published 27 Jul 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Deep neural network solutions have emerged as a new and powerful paradigm for speech enhancement (SE). The capabilities to capture long context and extract multi-scale patterns are crucial to design effective SE networks. Such capabilities, however, are often in conflict with the goal of maintaining compact networks to ensure good system generalization. In this paper, we explore dilation operations and apply them to fully convolutional networks (FCNs) to address this issue. Dilations equip the networks with greatly expanded receptive fields, without increasing the number of parameters. Different strategies to fuse multi-scale dilations, as well as to install the dilation modules are explored in this work. Using Noisy VCTK and AzBio sentences datasets, we demonstrate that the proposed dilation models significantly improve over the baseline FCN and outperform the state-of-the-art SE solutions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.