Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Body Shape and Pose from Dense Correspondences (1907.11955v1)

Published 27 Jul 2019 in cs.CV

Abstract: In this paper, we address the problem of learning 3D human pose and body shape from 2D image dataset, without having to use 3D dataset (body shape and pose). The idea is to use dense correspondences between image points and a body surface, which can be annotated on in-the wild 2D images, and extract and aggregate 3D information from them. To do so, we propose a training strategy called ``deform-and-learn" where we alternate deformable surface registration and training of deep convolutional neural networks (ConvNets). Unlike previous approaches, our method does not require 3D pose annotations from a motion capture (MoCap) system or human intervention to validate 3D pose annotations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.