Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lexicographic Multiarmed Bandit (1907.11605v2)

Published 26 Jul 2019 in cs.LG and stat.ML

Abstract: We consider a multiobjective multiarmed bandit problem with lexicographically ordered objectives. In this problem, the goal of the learner is to select arms that are lexicographic optimal as much as possible without knowing the arm reward distributions beforehand. We capture this goal by defining a multidimensional form of regret that measures the loss of the learner due to not selecting lexicographic optimal arms, and then, consider two settings where the learner has prior information on the expected arm rewards. In the first setting, the learner only knows for each objective the lexicographic optimal expected reward. In the second setting, it only knows for each objective near-lexicographic optimal expected rewards. For both settings we prove that the learner achieves expected regret uniformly bounded in time. The algorithm we propose for the second setting also attains bounded regret for the multiarmed bandit with satisficing objectives. In addition, we also consider the harder prior-free case, and show that the learner can still achieve sublinear in time gap-free regret. Finally, we experimentally evaluate performance of the proposed algorithms in a variety of multiobjective learning problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alihan Hüyük (24 papers)
  2. Cem Tekin (47 papers)

Summary

We haven't generated a summary for this paper yet.