Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial ergodicity for SPDEs via Poincaré-type inequalities (1907.11553v1)

Published 25 Jul 2019 in math.PR

Abstract: Consider a parabolic stochastic PDE of the form $\partial_t u=\frac{1}{2}\Delta u + \sigma(u)\eta$, where $u=u(t\,,x)$ for $t\ge0$ and $x\in\mathbb{R}d$, $\sigma:\mathbb{R}\rightarrow\mathbb{R}$ is Lipschitz continuous and non random, and $\eta$ is a centered Gaussian noise that is white in time and colored in space, with a possibly-signed homogeneous spatial correlation $f$. If, in addition, $u(0)\equiv1$, then we prove that, under a mild decay condition on $f$, the process $x\mapsto u(t\,,x)$ is stationary and ergodic at all times $t>0$. It has been argued that, when coupled with moment estimates, spatial ergodicity of $u$ teaches us about the intermittent nature of the solution to such SPDEs \cite{BertiniCancrini1995,KhCBMS}. Our results provide rigorous justification of such discussions. Our methods hinge on novel facts from harmonic analysis and functions of positive type, as well as from Malliavin calculus and Poincar\'e inequalities. We further showcase the utility of these Poincar\'e inequalities by: (a) describing conditions that ensure that the random field $u(t)$ is mixing for every $t>0$; and by (b) giving a quick proof of a conjecture of Conus et al \cite{CJK12} about the "size" of the intermittency islands of $u$. The ergodicity and the mixing results of this paper are sharp, as they include the classical theory of Maruyama \cite{Maruyama} (see also Dym and McKean \cite{DymMcKean}) in the simple setting where the nonlinear term $\sigma$ is a constant function.

Summary

We haven't generated a summary for this paper yet.