Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annotation-Free Cardiac Vessel Segmentation via Knowledge Transfer from Retinal Images (1907.11483v1)

Published 26 Jul 2019 in eess.IV and cs.CV

Abstract: Segmenting coronary arteries is challenging, as classic unsupervised methods fail to produce satisfactory results and modern supervised learning (deep learning) requires manual annotation which is often time-consuming and can some time be infeasible. To solve this problem, we propose a knowledge transfer based shape-consistent generative adversarial network (SC-GAN), which is an annotation-free approach that uses the knowledge from publicly available annotated fundus dataset to segment coronary arteries. The proposed network is trained in an end-to-end fashion, generating and segmenting synthetic images that maintain the background of coronary angiography and preserve the vascular structures of retinal vessels and coronary arteries. We train and evaluate the proposed model on a dataset of 1092 digital subtraction angiography images, and experiments demonstrate the supreme accuracy of the proposed method on coronary arteries segmentation.

Citations (33)

Summary

We haven't generated a summary for this paper yet.