Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Models to Predict Pediatric Asthma Emergency Department Visits (1907.11195v1)

Published 25 Jul 2019 in stat.ML, cs.LG, and stat.AP

Abstract: Pediatric asthma is the most prevalent chronic childhood illness, afflicting about 6.2 million children in the United States. However, asthma could be better managed by identifying and avoiding triggers, educating about medications and proper disease management strategies. This research utilizes deep learning methodologies to predict asthma-related emergency department (ED) visit within 3 months using Medicaid claims data. We compare prediction results against traditional statistical classification model - penalized Lasso logistic regression, which we trained and have deployed since 2015. The results have indicated that deep learning model Artificial Neural Networks (ANN) slightly outperforms (with AUC = 0.845) the Lasso logistic regression (with AUC = 0.842). The reason may come from the nonlinear nature of ANN.

Citations (8)

Summary

We haven't generated a summary for this paper yet.