Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Visual Actions Using Multiple Verb-Only Labels (1907.11117v2)

Published 25 Jul 2019 in cs.CV

Abstract: This work introduces verb-only representations for both recognition and retrieval of visual actions, in video. Current methods neglect legitimate semantic ambiguities between verbs, instead choosing unambiguous subsets of verbs along with objects to disambiguate the actions. We instead propose multiple verb-only labels, which we learn through hard or soft assignment as a regression. This enables learning a much larger vocabulary of verbs, including contextual overlaps of these verbs. We collect multi-verb annotations for three action video datasets and evaluate the verb-only labelling representations for action recognition and cross-modal retrieval (video-to-text and text-to-video). We demonstrate that multi-label verb-only representations outperform conventional single verb labels. We also explore other benefits of a multi-verb representation including cross-dataset retrieval and verb type manner and result verb types) retrieval.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Wray (29 papers)
  2. Dima Damen (83 papers)
Citations (7)