Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates for optimal control problems involving the Stokes system and Dirac measures (1907.11096v2)

Published 25 Jul 2019 in math.NA, cs.NA, and math.OC

Abstract: The aim of this work is to derive a priori error estimates for finite element discretizations of control--constrained optimal control problems that involve the Stokes system and Dirac measures. The first problem entails the minimization of a cost functional that involves point evaluations of the velocity field that solves the state equations. This leads to an adjoint problem with a linear combination of Dirac measures as a forcing term and whose solution exhibits reduced regularity properties. The second problem involves a control variable that corresponds to the amplitude of forces modeled as point sources. This leads to a solution of the state equations with reduced regularity properties. For each problem, we propose a finite element solution technique and derive a priori error estimates. Finally, we present numerical experiments, in two and three dimensions, that illustrate our theoretical developments.

Citations (13)

Summary

We haven't generated a summary for this paper yet.