Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Manipulate CNNs to Make Them Lie: the GradCAM Case (1907.10901v2)

Published 25 Jul 2019 in cs.CV, cs.CR, and cs.LG

Abstract: Recently many methods have been introduced to explain CNN decisions. However, it has been shown that some methods can be sensitive to manipulation of the input. We continue this line of work and investigate the explanation method GradCAM. Instead of manipulating the input, we consider an adversary that manipulates the model itself to attack the explanation. By changing weights and architecture, we demonstrate that it is possible to generate any desired explanation, while leaving the model's accuracy essentially unchanged. This illustrates that GradCAM cannot explain the decision of every CNN and provides a proof of concept showing that it is possible to obfuscate the inner workings of a CNN. Finally, we combine input and model manipulation. To this end we put a backdoor in the network: the explanation is correct unless there is a specific pattern present in the input, which triggers a malicious explanation. Our work raises new security concerns, especially in settings where explanations of models may be used to make decisions, such as in the medical domain.

Citations (27)

Summary

We haven't generated a summary for this paper yet.