Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalization of Weyl's Asymptotic Formula for the Relative Trace of Singular Potentials (1907.10798v1)

Published 25 Jul 2019 in math-ph, math.MP, and math.SP

Abstract: By Weyl's asymptotic formula, for any potential $V$ whose negative part $V_-$ is an $L{1+d/2}$-function, \begin{align*} \operatorname{Tr} [-h2 \Delta + V]- &= L_d{\mathrm{cl}} h{-d} \int \mathrm{d} x\,[V]-{1+\frac d 2} + \mathrm{o} (h{-d})_{h \to 0} , \end{align*} with the semiclassical constant $L{\mathrm{cl}}_d = 2{-d} \pi{-d/2} / \Gamma (2 + \frac d 2)$. In this paper, we show that, even if $[V_1]-, [V_2]- \notin L{1+d/2}$, but the difference $[V_1]-{1+d/2}-[V_2]-{1+d/2}$ is integrable, then we still have the asymptotic formula [ \operatorname{Tr} [-h2 \Delta + V_1 ]- - \operatorname{Tr} [-h2 \Delta + V_2 ]- = L{\mathrm{cl}}_{d} h{-d} \int \mathrm{d} x\,([V_1]-{1+\frac d 2}-[V_2]-{1+\frac d 2}) + \mathrm{o} (h{-d})_{h\to 0} . ] This is a generalization of Weyl's formula in the case that $\operatorname{Tr} [-h2 \Delta + V_1]-$ and $\operatorname{Tr} [-h2\Delta + V_2]-$ are seperately not of order $\mathrm{O} (h{-d})$.

Summary

We haven't generated a summary for this paper yet.