Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knotting and weak knotting in confined, open random walks using virtual knots (1907.10770v1)

Published 24 Jul 2019 in cond-mat.soft and math.GT

Abstract: We probe the character of knotting in open, confined polymers, assigning knot types to open curves by identifying their projections as virtual knots. In this sense, virtual knots are transitional, lying in between classical knot types, which are useful to classify the ambiguous nature of knotting in open curves. Modelling confined polymers using both lattice walks and ideal chains, we find an ensemble of random, tangled open curves whose knotting is not dominated by any single knot type, a behaviour we call weakly knotted. We compare cubically confined lattice walks and spherically confined ideal chains, finding the weak knotting probability in both families is quite similar and growing with length, despite the overall knotting probability being quite different. In contrast, the probability of weak knotting in unconfined walks is small at all lengths investigated. For spherically confined ideal chains, weak knotting is strongly correlated with the degree of confinement but is almost entirely independent of length. For ideal chains confined to tubes and slits, weak knotting is correlated with an adjusted degree of confinement, again with length having negligible effect.

Summary

We haven't generated a summary for this paper yet.