Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curriculum based Dropout Discriminator for Domain Adaptation (1907.10628v2)

Published 24 Jul 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Domain adaptation is essential to enable wide usage of deep learning based networks trained using large labeled datasets. Adversarial learning based techniques have shown their utility towards solving this problem using a discriminator that ensures source and target distributions are close. However, here we suggest that rather than using a point estimate, it would be useful if a distribution based discriminator could be used to bridge this gap. This could be achieved using multiple classifiers or using traditional ensemble methods. In contrast, we suggest that a Monte Carlo dropout based ensemble discriminator could suffice to obtain the distribution based discriminator. Specifically, we propose a curriculum based dropout discriminator that gradually increases the variance of the sample based distribution and the corresponding reverse gradients are used to align the source and target feature representations. The detailed results and thorough ablation analysis show that our model outperforms state-of-the-art results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.