Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing (1907.10578v2)

Published 24 Jul 2019 in q-fin.CP, q-fin.MF, and q-fin.PR

Abstract: We propose a new forward-backward stochastic differential equation solver for high-dimensional derivatives pricing problems by combining deep learning solver with least square regression technique widely used in the least square Monte Carlo method for the valuation of American options. Our numerical experiments demonstrate the efficiency and accuracy of our least square backward deep neural network solver and its capability to provide accurate prices for complex early exercise derivatives such as callable yield notes. Our method can serve as a generic numerical solver for pricing derivatives across various asset groups, in particular, as an efficient means for pricing high-dimensional derivatives with early exercises features.

Summary

We haven't generated a summary for this paper yet.