Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On importance-weighted autoencoders (1907.10477v2)

Published 24 Jul 2019 in stat.ML, cs.LG, and stat.CO

Abstract: The importance weighted autoencoder (IWAE) (Burda et al., 2016) is a popular variational-inference method which achieves a tighter evidence bound (and hence a lower bias) than standard variational autoencoders by optimising a multi-sample objective, i.e. an objective that is expressible as an integral over $K > 1$ Monte Carlo samples. Unfortunately, IWAE crucially relies on the availability of reparametrisations and even if these exist, the multi-sample objective leads to inference-network gradients which break down as $K$ is increased (Rainforth et al., 2018). This breakdown can only be circumvented by removing high-variance score-function terms, either by heuristically ignoring them (which yields the 'sticking-the-landing' IWAE (IWAE-STL) gradient from Roeder et al. (2017)) or through an identity from Tucker et al. (2019) (which yields the 'doubly-reparametrised' IWAE (IWAE-DREG) gradient). In this work, we argue that directly optimising the proposal distribution in importance sampling as in the reweighted wake-sleep (RWS) algorithm from Bornschein & Bengio (2015) is preferable to optimising IWAE-type multi-sample objectives. To formalise this argument, we introduce an adaptive-importance sampling framework termed adaptive importance sampling for learning (AISLE) which slightly generalises the RWS algorithm. We then show that AISLE admits IWAE-STL and IWAE-DREG (i.e. the IWAE-gradients which avoid breakdown) as special cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Axel Finke (15 papers)
  2. Alexandre H. Thiery (32 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com