Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathcal{PT}$-symmetric non-Hermitian Dirac semimetals (1907.10417v2)

Published 24 Jul 2019 in cond-mat.mes-hall, cond-mat.str-el, physics.optics, and quant-ph

Abstract: Parity-time ($\mathcal{PT}$) symmetry plays an important role both in non-Hermitian and topological systems. In non-Hermitian systems $\mathcal{PT}$ symmetry can lead to an entirely real energy spectrum, while in topological systems $\mathcal{PT}$ symmetry gives rise to stable and protected Dirac points. Here, we study a $\mathcal{PT}$-symmetric system which is both non-Hermitian and topological, namely a $\mathcal{PT}$-symmetric Dirac semimetal with non-Hermitian perturbations in three dimensions. We find that, in general, there are only two types of symmetry allowed non-Hermitian perturbations, namely non-Hermitian kinetic potentials, and non-Hermitian anti-commuting potentials. For both of these non-Hermitian potentials we investigate the band topology for open and periodic boundary conditions, determine the exceptional points, and compute the surface states. We find that with periodic boundary conditions, the non-Hermitian kinetic potential leads to exceptional rings, while the non-Hermitian anti-commuting potential generates exceptional spheres, which separate regions with broken $\mathcal{PT}$ symmetry from regions with unbroken $\mathcal{PT}$ symmetry. With open boundary conditions, the non-Hermitian kinetic potential induces a non-Hermitian skin effect which is localized on both sides of the sample due to symmetry, while the non-Hermitian anticommuting potential leads to Fermi ribbon surface states.

Summary

We haven't generated a summary for this paper yet.