Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional inference using the extremal skew-$t$ process (1907.10187v4)

Published 24 Jul 2019 in stat.ME

Abstract: Max-stable processes are a popular tool for the study of environmental extremes, and the extremal skew-$t$ process is a general model that allows for a flexible extremal dependence structure. For inference on max-stable processes with high-dimensional data, exact likelihood-based estimation is computationally intractable. Composite likelihoods, using lower dimensional components, and Stephenson-Tawn likelihoods, using occurrence times of maxima, are both attractive methods to circumvent this issue for moderate dimensions. In this article we establish the theoretical formulae for simulations of and inference for the extremal skew-$t$ process. We also incorporate the Stephenson-Tawn concept into the composite likelihood framework, giving greater statistical and computational efficiency for higher-order composite likelihoods. We compare 2-way (pairwise), 3-way (triplewise), 4-way, 5-way and 10-way composite likelihoods for models of up to 100 dimensions. Furthermore, we propose cdf approximations for the Stephenson-Tawn likelihood function, leading to large computational gains, and enabling accurate fitting of models in large dimensions in only a few minutes. We illustrate our methodology with an application to a 90-dimensional temperature dataset from Melbourne, Australia.

Summary

We haven't generated a summary for this paper yet.