Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Structured Fusion Networks for Dialog (1907.10016v1)

Published 23 Jul 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Neural dialog models have exhibited strong performance, however their end-to-end nature lacks a representation of the explicit structure of dialog. This results in a loss of generalizability, controllability and a data-hungry nature. Conversely, more traditional dialog systems do have strong models of explicit structure. This paper introduces several approaches for explicitly incorporating structure into neural models of dialog. Structured Fusion Networks first learn neural dialog modules corresponding to the structured components of traditional dialog systems and then incorporate these modules in a higher-level generative model. Structured Fusion Networks obtain strong results on the MultiWOZ dataset, both with and without reinforcement learning. Structured Fusion Networks are shown to have several valuable properties, including better domain generalizability, improved performance in reduced data scenarios and robustness to divergence during reinforcement learning.

Citations (83)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.